Median and Mean

Example

1. Let $g(x)=\left\{\begin{array}{ll}x & 0 \leq x \leq 1 \\ 2-x & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Problems

2. True False It is possible for the mean for a discrete PDF to not exist.
3. True False Another name for the mean of a PDF is the expected value.
4. True False For a discrete PDF, we can always choose the mean with nonzero probability.
5. True False For a discrete PDF, we can always choose the median with nonzero probability.
6. True False There exists a uniform distribution on all the real numbers.
7. Let $g(x)=\left\{\begin{array}{ll}x^{2} & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
8. Let $g(x)=\left\{\begin{array}{ll}x e^{-x^{2}} & 0 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
9. Let $g(x)=\left\{\begin{array}{ll}e^{-x} & -1 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
10. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & x \leq-1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
11. Let $g(x)=\frac{1}{1+x^{2}}$ for $x \geq 0$ and 0 otherwise. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
12. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & 2 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
